
U2F HID Implementation - Microprocessor to U2F Key
6.858 - Computer Systems Security. May 5th, 2022.

TORQUE (TAREQ) EL DANDACHI, ASHIKA VERMA, and MUHAMMAD ABDULLAH
We design and implement a U2F Key that follows the FIDO2 U2F Protocol.
The key is designed to interact withWebAuthn across different browsers as a
second factor authenticator device. The code is designed to be uploaded onto
a teensy with one button for verifying user presence. We use two AES128
encrypted keys hard-coded upon installation, 𝐾𝑤𝑟𝑎𝑝 and 𝐾𝑎𝑝𝑝 to generate
the handle and encrypt the application parameter.

1 INTRODUCTION

1.1 Overview of U2F
Universal 2nd Factor (U2F) is an open standard that strengthens
and simplifies two-factor authentication using specialized USB or
NFC devices based on similar security technology found in smart
cards. Essentially, it adds a second layer of protection to the simple
username and password that many web services employ. The user
flow of trying to log in remains similar: a user logs in with their user-
name and password. However, at any point in time, the web service
can request the user for their second factor for authentication.

For our project, we designed and implemented a U2F Key which
follows the FIDO2 U2F protocol. In the following sections, we ex-
plain how we implemented and interacted with each component of
the protocol, including encryption, the hardware we used for the
security key, communication between the hardware and client, web
authentication, and future steps.

1.2 GitHub Repository
All of our code can be found in our GitHub repository,
github.com/tareqdandachi/u2f. We include code which implements
the U2F protocol for a Teensy 3.2 to create a security key, and code
to create a website which uses the U2F protocol for credentials.

1.3 FIDO2 U2F
We focused on implementing the FIDO2 U2F protocol. For FIDO2
U2F, the user must present a security key for their second factor,
which is usually a USB device. There are two flows in the FIDO2
U2F protocol, registration and authentication as show in Figure 1
and 2.
There are three different components to make the U2F protocol

secure, the website (or relying party), the user’s browser (client),
and the security key. Registration and authentication are a three
step process: (1) the relying party issues a challenge to the security
key, (2) the security key signs the challenge, and (3) the relying
party checks the signature with the security key’s public key. To
prevent against Man-in-the-Middle (MitM) attacks, the origin and
TLS channel ID are hashed and passed along as the application pa-
rameter to the security key, is then signed by the security key, which
when passed back to the relying party, and can be verified using
the public key send during registration. To prevent against device
cloning attacks, the security key has a counter which increments

1Figures copied from https://css.csail.mit.edu/6.858/2022/readings/u2f-fc.pdf

Fig. 1. Security Key Registration1

Fig. 2. Security Key Authentication1

while authenticating and is forwarded to the client. If the counter is
ever less than the counter the relying party stored, then the security
key has been compromised. Lastly, there’s an attestation certificate
which can be re-used in multiple keys allowing clients to revoke
keys if a certain model is compromised or it can be used for added
checks such as a banking website only wanting their own signed
security keys to be used on their website.

2 U2F PROTOCOL

2.1 Request Message Framing
The U2F Request message is framed in a standard application proto-
col data unit (APDU) format. This requires a 7-byte header in the
following order:

• CLA: Always 0x00.
• INS: The instruction to be executed.
• P1-2: Two parameter bytes, P1 and P2.
• L1-2: Length of the data to be transferred.
• Data: The request data.

The INS header byte determines whether the request is for 0x01:
U2F_REGISTER, 0x02: U2F_AUTHENTICATE, 0x03: U2F_VERSION
or vendor specific instructions that live between 0x40 −→ 0xbf .
For U2F_REGISTER, the P1 and P2 fields are not used. Meanwhile

https://github.com/tareqdandachi/u2f
https://css.csail.mit.edu/6.858/2022/readings/u2f-fc.pdf


P1 field is used by the FIDO Client for U2F_AUTHENTICATE to spec-
ify between check-only authentication (0x07) or enforce-user-
presence-and-sign authentication (0x03).

2.2 Processing Registration Requests
For registration, the request data is 64 bytes long. The first 32 bytes
are the challenge hash followed by the application parameter. Fol-
lowing the U2F Protocol, the U2F key generates a key pair and a
handle from store(application parameter, private key). It
also generates a signature and appends it to the end.
The data is first hashed with SHA-256 and then signed with the

attestation key belonging to the attestation certificate. The response
is constructed as follows:

Fig. 3. Framing of a successful registration response2

The certificate and the signature are sent in DER format, the
certificate allows the FIDO client to recognise a batch of keys so
that any defective keys can be refused. The exact DER format of the
signature is specified in the next section, along with the encryption
used in store and retrieve.

2.3 Processing Authentication Requests
For authentication, the first 64 bytes of the request data are the
challenge hash and the application parameter. This is followed by a
byte specifying the key handle length and the key handle.
If the P1 field is 0x07, we only need to verify the handle. In that

case we use a modified retrieve operation as defined in Alg. 2. We
do not return the private key, instead the return value is conditional
on the assertion app” == app’. If the assertion passes, we respond
with the error message “Test-of-user-presence required”: this is the
success message for check-only authentication, despite it being an
error message in P1=0x03. If the assertion fails, we respond with
the error message “Bad Key Handle”.

2Figures copied from https://fidoalliance.org/specs/fido-u2f-v1.0-ps-20141009/fido-u2f-
raw-message-formats-ps-20141009.pdf

Fig. 4. Framing of a successful authentication response2

If the P1 field is 0x03, we need to verify the handle and the user
presence. We then follow the standard U2F authentication process;
test for user presence, increment the counter and return the response
in the format above. The important difference between this signature
and the one used in registration is that this the signature is signed
with the private key, not the attestation key.

2.4 Version Requests
The last type of request is a 0x03: U2F_VERSION instruction request.
The response message’s raw representation is the ASCII representa-
tion of the string U2F_V2. The command takes no flags.

3 ENCRYPTION

3.1 True RNG
We seed the key generation with static to get better entropy. This is
done by reading analog pin 0 and taking the least significant bit of
the result. If the result doesn’t change between two reads, then we
count the number of cycles it takes to change and use the count’s
least significant bit as the next bit.

3.2 Signature
The signature is done deterministically using the relevant key. The
DER format requires that the signature data (R,S pair) is appended
in the following order:
• Header: 0x30 for compound structure.
• Length: The length of all that follows
• Header: 0x02
• Length: The length of the R-value.
• R-Value: The R-value.
• Header: 0x02
• Length: The length of the S-value.
• S-Value: The S-value.

We also drop the last byte of the attestation certificate.

3.3 Handle Encryption
We use the specification described in the original U2F paper for
store and retrieve.

The encrypt and decrypt functions use AES-128 in 16-byte blocks
on the 32 or 64 byte data, done using the Electronic Code Book (ECB)
scheme. ECB is simpler than the standard Cipher-Block Chaining
scheme at the cost of unreliable obfuscation on large plaintext with

2

https://fidoalliance.org/specs/fido-u2f-v1.0-ps-20141009/fido-u2f-raw-message-formats-ps-20141009.pdf
https://fidoalliance.org/specs/fido-u2f-v1.0-ps-20141009/fido-u2f-raw-message-formats-ps-20141009.pdf


Algorithm 1 Store(app, 𝑘𝑝𝑟𝑖𝑣 )→ H

𝑎𝑝𝑝 ′ ← 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 (𝑎𝑝𝑝)𝐾𝑎𝑝𝑝

𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡 ← 𝐼𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑒 (𝑘𝑝𝑟𝑖𝑣, 𝑎𝑝𝑝 ′)
𝐻 ← 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 (𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡)𝐾𝑤𝑟𝑎𝑝

return 𝐻

Algorithm 2 Retrieve(app, H)→ 𝑘𝑝𝑟𝑖𝑣

𝑎𝑝𝑝 ′ ← 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 (𝑎𝑝𝑝)𝐾𝑎𝑝𝑝

𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡 ← 𝐷𝑒𝑐𝑟𝑦𝑝𝑡 (𝐻 )𝐾𝑤𝑟𝑎𝑝

(𝑘𝑝𝑟𝑖𝑣, 𝑎𝑝𝑝 ′′) ← 𝐷𝑒𝑖𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑒 (𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡)
assert 𝑎𝑝𝑝 ′ == 𝑎𝑝𝑝 ′′

return 𝑘𝑝𝑟𝑖𝑣

patterns. That is not an issue in our case since we encrypt at most
4 blocks of data alongside interleaving which further reduces de-
tectable patterns.

4 HARDWARE

4.1 Microcontroller
We developed and tested this implementation on a Teensy 3.2. We
based this on 3 main factors:

(1) The Teensy 3.2 has a built-in EEPROM memory we can use
to store the counter that retains memory even when shut
off.

(2) It is capable of full-speedHID communication using RawHID
which is used to send 64 bytes per packet.

(3) It is small and has accessible solder pads to add our own
connections to the USB power and data bus.

To use the microcontroller as an HID device that interacts with
WebAuthn, we need it to be discoverable as a FIDO device. This
identification is done by defining a control usage defined by chang-
ing the usage page and usage id parameters of our device. The FIDO
standard requires our usage page to be defined as 0xF1D0 and usage
id as 0x01. These can be changed by modifying the usb_desc.h file
that corresponds to the RawHID protocol in the teensy3 source.

4.2 Physical Key with Button
For our physical device, we designed a small key with a male USB
A port and a button for verifying user presence. The button is in a
pull down configuration with the electronics placed on a protoboard
that is soldered onto the teensy body. The button is connected to
pin 19 on the microcontroller. We soldered the male USB A port
onto the solder pads below the teensy 3.2 corresponding to 𝐷+, 𝐷−,
power and ground. The device we ended up making is displayed in
figure 5.

5 COMMUNICATION

5.1 RawHID and U2FHID
For robust bidirectional communication with USB host applications,
we use RawHID. We implement the FIDO2 U2F protocol over USB

Fig. 5. Teensy 3.2 with both a male USB A port and a female micro-USB B
port. The teensy has a protoboard attached to one side that houses a button
and a 1K resistor in a pull down configuration.

HID (Human Interface Device)3. HID transfers use smaller data
chunks per transaction and don’t require drivers causing them to
be more reliable than USB CDC (Communications Device Class)
transfers (i.e. virtual serial ports).
Our hardware supports sending and recieving 64-byte packets

with a host application, in this case a WebAuthn client. Since it
doesn’t require drivers, it works out of the box and should automat-
ically be detected by browsers that implement the WebAuthn API.
This transfer method allows for multi-application support, fixed
latency and low-overhead; making the U2FHID protocol much more
scalable for discovery and use. When the HID communication be-
gins, our hardware sends parameters over that specify the vendor
id, product id, usage page and usage id (discussed in section 4.1).
Messaging in this protocol consists of three layers. Firstly, we

need a way to carry HID reports at the channel level and encodemes-
sages inside of these transactions. This level of messaging contains
instructions that start, end and communicate within the HID scheme.
They are also responsible for channel allocation and propagating
errors at the HID level. The second layer focuses on Application
Protocol Data Unit (APDU), a way to encode response and request
data along with status words. The final layer deals with the repre-
sentation of response and request data in a way pertaining to our
protocol, this is discussed in section 2.

5.2 Communication Protocol/Transactions

5.3 Packets and Channels
The U2FHID protocol defines transactions, which are requests fol-
lowed by a message. Transactions are blocking once intiated: once
a transaction is initiated, it needs to be fully resolved before a new
transaction takes place. Messaging is done through a smaller unit
of data called a packet, these correspond to HID reports. Packets
have a fixed size.
The protocol is designed for concurrency: multiple clients can

access a single resource through the HID stack. The protocol defines
logical channels (channels handled through encoding rather than

3https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-hid-protocol-
v1.2-ps-20170411.pdf

3

https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-hid-protocol-v1.2-ps-20170411.pdf
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-hid-protocol-v1.2-ps-20170411.pdf


physically different channels). To manage routing, our implemen-
tation assigns one of four unique channel identifiers to each appli-
cation. Channel identifiers are 32-bit numbers where 0x00000000
and 0xffffffff are reserved. 0xffffffff is used for channel allo-
cation.
To manage concurrency, we keep track of 5 internal states:

Available, Wait_init, Wait_cont, Timeout, Large. This helps our
device manage concurrency with requests, enter busy modes and
allow for consistency between the processing requests.

5.4 Messaging and Headers
Each request and response begins with an initialization packet and
is followed by continuation packets if the messaging requires more
space. The U2F device never sends a response if no request is initi-
ated from a host.

5.4.1 Initialization Packets. The first 32 bits of all packets are a
channel identifier. Next follows 8 bits corresponding to a command
identifier. The command identifier encodes different U2FHID com-
mands such as U2FHID_MSG, U2FHID_INIT and U2FHID_ERROR. The
next 16 bits encode the payload length. The remaining 57 bytes are
the payload. The command identifier always ahs the highest bit set
to 1 (command identifier always greater than 0x7f), to distinguish
it from a continuation packet which has that bit always set to 0.

5.4.2 Continuation Packets. As with initialization packets, the first
32 bits encode the channel identifier. This is followed by a bit that is
always set to zero, identifying the packet as a continuation packet.
The next 7 bits encode the packet sequence which starts at 0 and
is incremented for every next packet. This is then followed by 59
bits corresponding to the payload. Note that this means with our
implementation of 64-bytes of HID communication (the maximum
for full-speed devices), the maximum payload length is 7609 bytes.

5.5 Message Framing
5.5.1 Request Message APDU. The request message is encoded
using the Application Protocol Data Unit (APDU) spec and needs
to be processed to extract the different parts of it. The APDU can
be encoded in Extended Length Encoding for a maximum length of
65,535 bytes or a Short Encoding allowing a maximum of 256 bytes
to be sent. The message payload is prefaced with a CLA byte which
we set and check to be zero. It is then followed by an instruction code
which contains U2F protocol instruction codes that specify what
part of the U2F protocol to run. This is followed by 2 parameters
defined by the U2F instruction used. It is followed by the length of
the request data and expected length of the payload.

5.5.2 Response Message APDU. The response message ADPU con-
tains the response data followed by a 16-bit status word. The U2F
protocol defines 6 status words as defined in ISO7816-4 with a special
meaning:

(1) 0x9000 SW_NO_ERROR: command completed successfully.
(2) 0x6985 SW_CONDITIONS_NOT_SATISFIED: failed test of user

presence.
(3) 0x6A80 SW_WRONG_DATA: invalid key handle.
(4) 0x9000 SW_WRONG_LENGTH: invalid length of request.

(5) 0x6E00 SW_CLA_NOT_SUPPORTED: “Class byte of the request
is not supported.” In our implementation, CLA byte is en-
forced to be 0x00.

(6) 0x6D00 SW_WRONG_LENGTH: requested instruction not sup-
ported, our implementation only supports the main 3 out-
lined in the U2F spec with no other vendor specific instruc-
tions: U2F_VERSION, U2F_REGISTER and U2F_AUTHENTICATE.

6 WEBAUTHN

6.1 WebAuthn API
The Web Authentication API (WebAuthn) is a specification written
by W3C and FIDO with participation of Google, Mozilla, Microsoft,
Yubico and others. It is a public key extension of the existing creden-
tial management API. Essentially, it allows servers to register and
authenticate users using the FIDO2 U2F framework and makes it
easy for servers to add this additional layer of security to the servers
current password management system. In addition to the supporting
FIDO U2F devices, WebAuthn also allows other types of authenti-
cators such as Android Attestation Keys or Trusted Platform keys
(like the fingerprint sensor on some MacBooks).

6.2 Registration
The client first issues a request to the relying party to register along
with user information for the relying party to store credential infor-
mation about the user. Next, using WebAuthn, the relying party can
issue a 32 byte challenge and pass along parameters such as relying
party url or the type of attestation. From there the browser issues
requests for a second factor to register. The user can press their FIDO-
U2F compliant security key to run through the protocol detailed
in Section 2. The Webauthn API creates a PublicKeyCredential
object which contains the ClientData (challenge and origin) and
attestation object (signature, public key, and handle). The client
then send the PublicKeyCredential to the relying party or server.
The PublicKeyCredential can be decoded and unravelled to get
the ClientData, public key of the security key, the handle, the at-
testation certificate and signature, which the relying party uses as
shown in Figure 1. The relying party can check the signature with
the public key and if needed verify the attestation certificate. The
relying party then stores the public key of the security key and
handle in its own database. From there, the relying party can tie a
user to these new credentials by saving these credentials.

6.3 Authentication
Authentication follows a similar flow as registration using Webau-
thn, except the security key sends back a counter and a signature of
the counter plus the hash of the ClientData. The relying party then
checks the signature with the private key that it stored earlier and
also checks if the counter has increased from the previous observed
value to prevent device replication attacks. After authentication, the
relying party can log the user in for the rest of the session.

6.4 WebAuthn Requests
The WebAuthn API communicates with keys using requests as
discussed in section 5. Once a host triggers aWebAuthn authenticate
message, the message is broadcast to all connected U2F devices.

4



The first device to respond with a positive test of user presence
allows the authenticator to continue with the communication. The
broadcast to all connected U2F devices is filtered by the usage page
that corresponds to that of the FIDO2 U2F protocol as discussed in
4.1.

6.5 Testing HID to WebAuthn Communication
We created our own relying party which uses WebAuthn which
can be accessed at u2f-858.herokuapp.com. However, other useful
resources to verify the entire stack is functional included:

• webauthn.io
• demo.yubico.com/webauthn-technical

7 RESULTS AND FUTURE STEPS
Our implementation worked on registering and authenticating on
modern websites and is secure against testing on the Yubico Key
testing suite. We published our implementation onto GitHub. The
implementation works as-is with little to no hardware modification
(the addition of a button for user presence but that can be turned
off).

Given more time, we would like to develop changes on the hard-
ware. Namely, we would want to add a true random number gen-
erator hardware module that we sample from instead of seeding
randomness by measuring static. We would also design hardware
specifically for encryption and decryption on a secure element. We
hope to be able to convert this implementation into robust hardware
rather than software running on a microprocessor to remove the
reliance on a secure infrastructure provided by the teensy.
On the software side of things, we hope to emphasize the acces-

siblity of this implementation so that anyone could load this onto
any microcontroller they have. We designed and tested this on a
Teensy 3.2, but there is nothing that is completely specific and not
reproducible on other hardware (except for counter on EEPROM
on some devices). Hopefully this could turn into a user friendly
program people can use to make a custom key without needing to
install arduino.

REFERENCES
(1) https://fidoalliance.org/specs/fido-u2f-v1.0-ps-20141009/fido-

u2f-hid-protocol-ps-20141009.html
(2) https://fidoalliance.org/specs/fido-u2f-v1.0-ps-20141009/fido-

u2f-raw-message-formats-ps-20141009.pdf
(3) https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-

u2f-hid-protocol-v1.2-ps-20170411.pdf
(4) https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-

u2f-raw-message-formats-v1.2-ps-20170411.html
(5) https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-client-

to-authenticator-protocol-v2.0-id-20180227.html
(6) https://fidoalliance.org/specifications/
(7) http://www.linux-usb.org/usb.ids
(8) https://github.com/tonijukica/webauthn.git
(9) http://bitcoin.stackexchange.com/questions/12554/why-the-

signature-is-always-65-13232-bytes-long
(10) https://css.csail.mit.edu/6.858/2022/readings/u2f-fc.pdf
(11) https://demo.yubico.com/webauthn-technical/
(12) https://webauthn.io/

5

https://u2f-858.herokuapp.com/
https://webauthn.io/
https://demo.yubico.com/webauthn-technical/registration
https://www.github.com/tareqdandachi/u2f
https://fidoalliance.org/specs/fido-u2f-v1.0-ps-20141009/fido-u2f-hid-protocol-ps-20141009.html
https://fidoalliance.org/specs/fido-u2f-v1.0-ps-20141009/fido-u2f-hid-protocol-ps-20141009.html
https://fidoalliance.org/specs/fido-u2f-v1.0-ps-20141009/fido-u2f-raw-message-formats-ps-20141009.pdf
https://fidoalliance.org/specs/fido-u2f-v1.0-ps-20141009/fido-u2f-raw-message-formats-ps-20141009.pdf
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-hid-protocol-v1.2-ps-20170411.pdf
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-hid-protocol-v1.2-ps-20170411.pdf
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-client-to-authenticator-protocol-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-client-to-authenticator-protocol-v2.0-id-20180227.html
https://fidoalliance.org/specifications/
http://www.linux-usb.org/usb.ids
https://github.com/tonijukica/webauthn.git
http://bitcoin.stackexchange.com/questions/12554/why-the-signature-is-always-65-13232-bytes-long
http://bitcoin.stackexchange.com/questions/12554/why-the-signature-is-always-65-13232-bytes-long
https://css.csail.mit.edu/6.858/2022/readings/u2f-fc.pdf
https://demo.yubico.com/webauthn-technical/
https://webauthn.io/

	Abstract
	1 Introduction
	1.1 Overview of U2F
	1.2 GitHub Repository
	1.3 FIDO2 U2F

	2 U2F Protocol
	2.1 Request Message Framing
	2.2 Processing Registration Requests
	2.3 Processing Authentication Requests
	2.4 Version Requests

	3 Encryption
	3.1 True RNG
	3.2 Signature
	3.3 Handle Encryption

	4 Hardware
	4.1 Microcontroller
	4.2 Physical Key with Button

	5 Communication
	5.1 RawHID and U2FHID
	5.2 Communication Protocol/Transactions
	5.3 Packets and Channels
	5.4 Messaging and Headers
	5.5 Message Framing

	6 WebAuthn
	6.1 WebAuthn API
	6.2 Registration
	6.3 Authentication
	6.4 WebAuthn Requests
	6.5 Testing HID to WebAuthn Communication

	7 Results and Future Steps

